Returns a specific Laplacian matrix corresponding to the chosen dynamics type and network. The available types are:
for the classical combinatorial Laplacian matrix; it governs the diffusion dynamics on the network
for the Laplacian matrix normalized by degree matrix, the so-called classical random walk normalized Laplacian; it governs stochastic walks on the network
for the Laplacian matrix normalized to be symmetric; it governs quantum walks on the network
the maximal-entropy random walk (RW) normalized Laplacian; it governs stochastic walks on the network, in which the random walker moves according to a maximal-entropy RW [1].
The maximum entropy random walk (MERW) chooses the stochastic matrix which
maximizes \(H(S)\), so that the walker can explore every walk of the
same length with equal probability.
Let \(\lambda_N, \phi\) be the leading eigenvalue and
corresponding right eigenvector of the adjacency matrix \(A\). Then the
transition matrix corresponding to the discrete-time random walk is
\(\Pi_{ij} = \frac{A_{ij}}{\lambda_N}\frac{\phi_j}{\phi_i}.\)
The MERW (normalized) Laplacian is then given by \(I - \Pi\).
Note that we use the notation \(\Pi\) and Pi
to avoid confusion
with the abbreviation T
for the logical TRUE
.
get_laplacian(g, type = "Laplacian", weights = NULL, verbose = TRUE)
getLaplacianMatrix(g, type = "Laplacian", weights = NULL, verbose = TRUE)
a network
the type of Laplacian matrix. default "Laplacian"
, the
combinatorial Laplacian. Other types:
c("Normalized Laplacian", "Quantum Laplacian", "MERW Normalized
Laplacian")
.
Note that you can type abbreviations, e.g. "L", "N", "Q", "M" for the
respective types (case is ignored). The argument match is done through
match_arg
.
edge weights, representing the strength/intensity (not the cost!) of each link. if weights is NULL (the default) and g has an edge attribute called weight, then it will be used automatically. If this is NA then no weights are used (even if the graph has a weight attribute).
default TRUE
. If information on the type of Laplacian
or on edge weights should be printed.
the (`type`) Laplacian matrix of network `g`
[1] Burda, Z., et al. (2009). Phys Rev. Lett. 102 160602(April), 1–4. doi:10.1103/PhysRevLett.102.160602