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Preface

This are the lecture notes for the short course (8 hours) The Geometry of Statistical Models
(Trento - March, 2023). Feedback, as well as reports on typos and errors, are welcome.
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1 Introduction

The name C. R. Rao, Professor Emeritus of Statistics at Penn State University, is ubiquitous in
statistics and it was him in 1945, who firstly understood the geometrical meaning of Fisher’s
information (Rao 1945). Some results by Efron (Efron 1975), in 1975, inspired Shun-ichi
Amari, who discovered the family of affine 𝛼−connections. Chentsov independently obtained
the same results in 1972 (his work became known to the community only in 1982, with the
English version of his work (Chentsov 1982)). Other recurring names in the field, just to name
a few, are the ones of A. P. David, Lauritzen—who formalised the concept of a statistical
manifold for finite sample spaces—Nagaoka, co-author, with Amari, of the very first book
on information geometry (Amari and Nagaoka 2000), Giovanni Pistone for his works on non-
parametric IG, see e.g. (Pistone 2013), and Ay-Jost-Lê-Schwachhöfer, for their recent book
(Ay et al. 2017). Let us start with a very brief and informal introduction of the contents of
this short course.

Intuitively, we will start from a sample space Ω and define a differentiable structure on the
set 𝒫(Ω) of probability measures on the sample space. Curves on this (probability/statistical)
manifold are 1-dimensional parametric, statistical models. If 𝐼 is an open interval of ℝ and
the mapping

𝐼 ∋ 𝜃 ↦ 𝑝(⋅; 𝜃)𝜈
is smooth, then we can compute the velocity, acceleration, etc. of the curve and, consequently,
we can describe the geometry of the statistical model. (𝐼, Ω, 𝑝, 𝜈) is called a (regular) 1-
dimensional statistical model.

Observations

i. We have only introduced the sample space Ω, but we will need also a 𝜎−algebra, i.e. (Ω, ℰ)
ans a 𝜎−finite measure 𝜈 on this space. Then, as we will see, 𝑝(⋅; 𝜃) is a density w.r.t.
the reference/dominating measure 𝜈 (i.e. we are in an absolute-continuous framework).

ii. When writing 𝑝(𝑥; 𝜃), 𝑥 ∈ Ω is a sample, but we may also consider a random variable
𝑋 ∶ Ω → ℝ, and 𝑥 represents an observable on Ω.

iii. When Ω is infinite, 𝒫(Ω) is infinite-dimensional.
iv. Given a statistic 𝜅 ∶ Ω → Ω′, what happens to the geometric structure on 𝒫(Ω)? It turns

out that the Fisher metric is invariant under sufficient statistics.
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Let us look at some examples of manifolds of interest in IG: the set of positive-definite matrices
of dimension 𝑛 × 𝑛 is a sub-manifold of dimension 𝑛(𝑛+1)

2 of the 𝑛2−dimensional manifold of
all real matrices of that dimension; the set of neural networks, identified by the connection
weights W…

In the remaining of this section, we provide a brief recap of the main definitions of differential
geometry, which are useful for understanding IG. Usefull, but not mandatory, as we will see
in Chapter 3.

1.1 Differential Geometry Recap

The core objects of IG are manifolds, more specifically differentiable manifolds. So, we need a
brief recap of some concepts and tools of differential geometry. For more details see (Sernesi
1994; Lang 2012; Petersen 2006) or the lecture notes of your favourite “Geometric analysis”
course (also Moretti 2020).

A manifold is a set 𝑀 endowed with a manifold structure, which is defined as a collection of
local charts, an atlas.
A local chart is a pair (𝑈, 𝜑) where 𝑈 ⊂ 𝑀 and 𝜑 ∶ 𝑈 → 𝜑(𝑈) ⊂ ℝ𝑛1 is a bijection and 𝜑(𝑈)
is open in ℝ𝑛.
Two charts (𝑈, 𝜑), (𝑉 , 𝜓) are said to be 𝒞𝑘−compatible if either 𝑈 ∩ 𝑉 = ∅, or the map
𝜓 ∘ 𝜑−1 ∶ 𝜑(𝑈 ∩ 𝑉 ) → 𝜓(𝑈 ∩ 𝑉 ) ⊂ ℝ𝑛 is a bijection, and both this and its inverse 𝜑 ∘ 𝜓−1 ∶
𝜓(𝑈 ∩ 𝑉 ) → 𝜑(𝑈 ∩ 𝑉 ) ⊂ ℝ𝑛 are of class 𝒞𝑘, i.e. 𝜓 ∘ 𝜑−1 is a diffeomorphism of class 𝒞𝑘

between open sets of ℝ𝑛. An atlas of class 𝒞𝑘 is a collection of charts {(𝑈𝛼, 𝜑𝛼)}𝛼∈𝐼 , where
∪𝛼∈𝐼𝑈𝛼 = 𝑀 and the transition maps are pair-wise 𝒞𝑘−compatible. Finally, we say that the
atlas {(𝑈𝛼, 𝜑𝛼)}𝛼∈𝐼 defines a structure of 𝒞𝑘−manifold on 𝑀 and dim 𝑀 = 𝑛. If the charts
are 𝒞∞−compatible we talk about smooth charts, atlas, and manifold. On the other hand, if
𝑘 = 0 we call the manifold a topological manifold.

Remarks

i. One can give 𝑀 a topology in a unique way such that each each 𝑈𝛼 is open and the 𝜑𝛼
are topological isomorphisms (or homeomorphism, i.e. bijectinve and bi-continuous).

ii. Given two atlases of class 𝒞𝑘, they are equivalent if their union is still an atlas of class
𝒞𝑘 and it is the equivalent class of atlases of class 𝒞𝑘 that defines a 𝒞𝑘−manifold on 𝑀 .

iii. We assume here that everyone has some familiarity with the fundamentals of differential
geometry, so we do not make examples. For a more thorough introduction on differential
geometry, see(Lang 2012; Sernesi 1994).

1Here, 𝜑 could go, in general, to a topological linear space, i.e. a linear space with a topology making the
operations of sum and scalar multiplication, continuous(Lang 2012) (e.g. a Banach space). In this case, the
transition map 𝜓 ∘ 𝜑−1 would be an 𝒞𝑘−isomorphism of topological spaces. Here you might ask what is the
differentiability for a map between topological spaces, for which a good reference(Lang 2012).
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Given a chart at 𝑝 ∈ 𝑀 , i.e. 𝑈 ∋ 𝑝 and a 𝜑 ∶ 𝑈 ∈ ℝ𝑛, this is determined by its 𝑛 component
functions {𝜉𝑖 ∶ 𝑈 → ℝ}𝑛

𝑖=1, such that 𝜑(𝑝) = (𝜉1(𝑝), … , 𝜉𝑛(𝑝)). These are called the 𝑛 local
coordinates on 𝑈 defined by the chart 𝜑. Given two local charts at 𝑝 ∈ 𝑈 ∩ 𝑉 ⊂ 𝑀 , (𝑈, 𝜑),
(𝑉 , 𝜓), with coordinate systems [𝜉𝑖], [𝜌𝑖] respectively, the compositions 𝜓 ∘ 𝜑−1 and 𝜑 ∘ 𝜓−1 are
the change of coordinates maps.

Let us look at an example, which will play an important role in understanding affine connec-
tions.

Example: Affine manifold

A real affine space of dimension 𝑛 𝔸𝑛 is a triplet (𝔸𝑛, 𝑉 , ⃗ ), where 𝔸𝑛 is the set of points, 𝑉
is an 𝑛−dimensional vector space over ℝ–called the space of translations– and ⃗is a map from
𝔸𝑛 × 𝔸𝑛 to 𝑉 satisfying the following properties:

(i) for each fixed 𝑝 ∈ 𝔸𝑛 and vector 𝑣 ∈ 𝑉 there exists a unique 𝑞 ∈ 𝔸𝑛 such that ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑝𝑞 = 𝑣
(ii) ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑝𝑞 + ⃗⃗⃗ ⃗⃗ ⃗⃗𝑞𝑟 = ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑝𝑟.

Each affine space is a connected and path-connected topological manifold with a natural 𝒞∞

differential structure. For each point 𝑂 ∈ 𝔸𝑛 (the origin) and vector basis {𝑒𝑖}𝑛
𝑖=1 ⊂ 𝑉 we

can consider the map 𝑓 ∶ 𝔸𝑛 → ℝ𝑛 which takes a point 𝑝 ∈ 𝔸𝑛 into the 𝑛 coordinates of ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑂𝑝
w.r.t. the basis {𝑒𝑖}𝑛

𝑖=1 ⊂ 𝑉 , which is a bijection. Furthermore the Euclidean topology on
ℝ𝑛 induces a topology on 𝔸𝑛, which does not depend on the choice of the origin and basis. 𝑓
defines a global chart on 𝔸𝑛–called the Cartesian coordinate system with origin 𝑂 ∈ 𝔸𝑛 and
axes {𝑒𝑖}𝑛

𝑖=1 ⊂ 𝑉 –and each mapping 𝑓 defines a smooth atlas on the affine space. Given two
of these maps 𝑓, 𝑔 which are determined by different origins and bases in 𝑉 , 𝑔 ∘ 𝑓−1 ∶ ℝ𝑛 → ℝ𝑛

and 𝑓 ∘ 𝑔−1 ∶ ℝ𝑛 → ℝ𝑛 are linear and non-homogeneous coordinate transformations and are
hence smooth.

Let us now introduce the concept of differentiability of functions on a manifold.

A continuous map 𝑓 ∶ 𝑀 → 𝑁 between two differentiable manifolds of dimension 𝑛 and 𝑚
resp. is smooth (or also differentiable, or a morphism) at 𝑝 ∈ 𝑀 if 𝜓 ∘ 𝑓 ∘ 𝜑−1 ∶ ℝ𝑛 → ℝ𝑚

is differentiable for all charts (𝑈, 𝜑), (𝑉 , 𝜓) such that 𝑝 ∈ 𝑈 and 𝑓(𝑝) ∈ 𝑉 . We indicate by
𝐷(𝑀|𝑁) the class of smooth functions between 𝑀 and 𝑁 , or just by 𝐷(𝑀), when 𝑁 = ℝ.

1.1.1 Tangent spaces and differentials

Let us begin with derivations and differentiations in ℝ𝑛.
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With this identification of vectors with (directional) derivatives in mind, let us define the
tangent spaces of a manifold 𝑀 .

Definition 1.1 (Derivations). Given a smooth manifold 𝑀 , a derivation in 𝑝 ∈ 𝑀 is a
ℝ−linear map 𝐷𝑝 ∶ 𝐷(𝑀) → ℝ such that for all 𝑓, 𝑔 ∈ 𝐷(𝑀)

𝐷𝑝𝑓𝑔 = 𝑓(𝑝)𝐷𝑝𝑔 + 𝑔(𝑝)𝐷𝑝𝑓.

With the following linear structure

(𝑎𝐷𝑝 + 𝑏𝐷′
𝑝) 𝑓 ∶= 𝑎𝐷𝑝𝑓 + 𝑏𝐷′

𝑝𝑓 ∀𝑎, 𝑏 ∈ ℝ, ∀𝑓 ∈ 𝐷(𝑀)

the set 𝒟𝑝(𝑀) of of all derivations at 𝑝 becomes an ℝ−vector space.

We first observe that the space of derivations is not empty. Given a chart (𝑈, 𝜑) at 𝑝 with
coordinates [𝜉𝑖] the operators

𝜕
𝜕𝜉𝑖 ∣

𝑝
∶ 𝑓 ↦ 𝜕𝑓 ∘ 𝜑−1

𝜕𝜉𝑖 ∣
𝜑(𝑝)

are derivations. The subspace of 𝒟𝑝(𝑀) spanned by 𝜕
𝜕𝜉𝑖 has the same dimension as 𝑀 and

does not depend on the choice of the chart at 𝑝. Let [𝜌𝑖] be another local coordinate system
at 𝑝 defined by the chart (𝜓, 𝑉 ), then we have

𝜕
𝜕𝜌𝑘 ∣

𝑝
= 𝜕𝜉𝑟

𝜕𝜌𝑘 ∣
𝜓(𝑝)

𝜕
𝜕𝜉𝑟 ∣

𝑝
(1.1)

where the terms 𝜕𝜉𝑟

𝜕𝜌𝑘 ∣
𝜓(𝑝)

are the coefficients of the Jacobian 𝐽 of the change of coordinates

transformation, which is non singular. By definition, indeed, we have that 𝜕𝜉𝑟

𝜕𝜉𝑠 ∣
𝑝

= 𝛿𝑟
𝑠 and we

can compose the maps as follows 𝜑 ∘ 𝜓−1 ∘ 𝜓 ∘ 𝜑−1 which is the identity on 𝜑(𝑈 ∩ 𝑉 ), so that
𝛿𝑟

𝑠 = 𝜕𝜉𝑟

𝜕𝜉𝑠 ∣
𝑝

= 𝜕𝜉𝑟

𝜕𝜌𝑘 ∣
𝜓(𝑝)

𝜕𝜌𝑘

𝜕𝜉𝑠 ∣
𝜑(𝑝)

, i.e. the matrix 𝐽 is invertible, hence non singular. Therefore

the spaces spanned by 𝜕
𝜕𝜉𝑖 ∣

𝑝
and 𝜕

𝜕𝜌𝑘 ∣
𝑝

coincide. It remains to prove that the dimension of
the span of the 𝑛 derivations is 𝑛, i.e. that the 𝑛 derivations are linearly independent. But we
refer to any book on differential geometry for this.

Definition 1.2 (Tangent space). The tangent space of 𝑀 at 𝑝 ∈ 𝑀 is indicated by 𝑇𝑝𝑀 and
is the subspace of 𝒟𝑝(𝑀) spanned by the 𝑛 derivations 𝜕

𝜕𝜉𝑖 . It has dimension 𝑛 and does not
depend on the choice of the chart at 𝑝.
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The space of all derivations on 𝑀 at 𝑝 coincides with 𝑇𝑝𝑀 .

Let us go back to the affine manifold and consider its tangent space at 𝑝 ∈ 𝔸𝑛, 𝑇𝑝𝔸𝑛. It turns
out that there is a natural isomorphism between 𝑇𝑝𝔸𝑛 and 𝑉 .

Definition 1.3.
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Tangent and cotangent bundles

𝑇 𝑈 ∶= {(𝑝, 𝑣) ∣ 𝑝 ∈ 𝑈, 𝑣 ∈ 𝑇𝑝𝑀} , 𝑇 ∗𝑈 ∶= {(𝑝, 𝜔) ∣ 𝑝 ∈ 𝑈, 𝜔 ∈ 𝑇 ∗
𝑝 𝑀}

Definition 1.4 (Differential of a mapping or push forward). Let 𝑀, 𝑁 be two smooth mani-
folds and 𝑓 ∶ 𝑀 → 𝑁 a smooth function. The differential of 𝑓 at 𝑝 ∈ 𝑀 or push forward of 𝑓
at 𝑝 is the linear mapping

𝑑𝑓𝑝 ∶ 𝑇𝑝𝑀 → 𝑇𝑓(𝑝)𝑁
𝑋𝑝 ↦ 𝑑𝑓𝑋𝑝

(1.2)

defined by 𝑑𝑓𝑋𝑝(𝑔) ∶= 𝑋𝑝(𝑔 ∘ 𝑓) for all vectors 𝑋𝑝 ∈ 𝑇𝑝𝑀 and all smooth functions 𝑔 ∈ 𝐷(𝑁).

1.1.2 Vector and tensor fields

A vector field is a mapping 𝑋 ∶ 𝑝 ↦ 𝑋𝑝 ∈ 𝑇𝑝𝑀 , which associates to each point 𝑝 in the
manifold 𝑀 a tangent vector. We indicate by 𝔛(𝑀) the set of all vector fields on 𝑀 . Observe
that this set is not empty, for instance, the 𝑛−mappings defined by 𝜕

𝜕𝜉𝑖 ∶ 𝑝 → 𝜕
𝜕𝜉𝑖 ∣

𝑝
are vector

fields, formed by the natural basis given by the coordinate system [𝜉𝑖]. Each vector field 𝑋
may be written as 𝑋𝑝 = 𝑋𝑖

𝑝𝜕𝑖|𝑝, where 𝜕𝑖 ∶= 𝜕
𝜕𝜉𝑖 and 𝑋𝑖

𝑝, for 𝑖 = 1, … , 𝑛, are the scalar
components of 𝑋 w.r.t. the coordinate system [𝜉𝑖].

• change of basis

If the components of the vector field are 𝐶∞ w.r.t. some coordinate system, then they are
smooth w.r.t. any coordinate system, and 𝑋 is then called a smooth vector field. With the
following structure

𝑋 + 𝑌 ∶ 𝑝 ↦ 𝑋𝑝 + 𝑌𝑝 𝑐𝑋 ∶ 𝑝 ↦ 𝑐𝑋𝑝

the set 𝔛(𝑀) becomes a linear space. More generally, a mapping 𝑡 ∶ 𝑀 → 𝒜ℝ(𝑇𝑝𝑀) which
associates to a point 𝑀 ∋ 𝑝 a tensor 𝑡𝑝 in the tensor algebra generated by 𝑇𝑝𝑀, 𝑇 ∗

𝑝 𝑀 , and ℝ,
is said to by a tensor field.

• multilinear maps
• tensor products
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Assigning a smooth tensor field 𝑇 on 𝑀 is equivalent to assign a set of smooth functions which
map

(𝜉1, … , 𝜉𝑛) ↦ 𝑇 𝑖1…𝑖𝑚
𝑗1…𝑗𝑘

(𝜉1, … , 𝜉𝑛)
in every local coordinate patch of 𝑀 such that they satisfy the rules of transformation of the
components of a tensor, i.e.

𝑇 𝑖1⋯𝑖𝑚 𝑗1…𝑗𝑘
, (𝜉1, … , 𝜉𝑛) = 𝜕𝜉𝑖1

𝜕𝜌𝑘1
∣
𝑝

⋯ 𝜕𝜉𝑖𝑚

𝜕𝜌𝑘𝑚
∣
𝑝

𝜕𝜌𝑙1

𝜕𝜉𝑗1
∣
𝑝

… 𝜕𝜌𝑙𝑚

𝜕𝜉𝑗𝑚

∣
∣∣
∣𝑝

𝑇 ′𝑘1⋯𝑘𝑚 𝑙1…𝑙𝑘
(𝜌1, ⋯ , 𝜌𝑛)

Remark. Each vector field 𝑋 ∈ 𝔛(𝑀) defines a derivation at each point 𝑝 ∈ 𝑀 : take any
differentiable 𝑓 ∈ 𝐷(𝑀) then 𝑋𝑝(𝑓) ∶= 𝑋𝑖(𝑝) 𝜕𝑓

𝜕𝜉𝑖 ∣
𝑝
. In general, every smooth vector field 𝑋

defines a linear mapping from 𝐷(𝑀) to 𝐷(𝑀) by 𝑓 ↦ 𝑋(𝑓), where 𝑋(𝑓)(𝑝) =∶ 𝑋𝑝(𝑓) fore
every 𝑝 ∈ 𝑀 .

The differential of 𝑓 ∈ 𝐷(𝑀) at 𝑝 is the 1-form defined, in local coordinates, by

𝑑𝑓𝑝 = 𝜕𝑓
𝜕𝜉𝑖 ∣

𝑝
𝑑𝜉𝑖|𝑝.

Varying 𝑝 ↦ 𝑑𝑓𝑝 we have defined a smooth vector field 𝑑𝑓 , called the differential of 𝑓 (note
the absence of “at 𝑝”).

A particularly important tensor of covariant degree 2, i.e. a tensor in [𝑇𝑝𝑀]02 is the Riemannian
metric tensor, which we are introduce in the following section.

1.1.3 Riemannian manifolds

Assume that, for each 𝑝 ∈ 𝑀 , an inner product ⟨ , ⟩𝑝 is defined on 𝑇𝑝𝑀 . The mapping
𝑔 ∶ 𝑝 ↦ ⟨ , ⟩𝑝 ∈ [𝑇𝑝𝑀]02, or, equivalently, assume we have a smooth covariant tensor field on 𝑀
of degree 2, determining a symmetric, positive definite quadratic form 𝑔(𝑝) ∶ 𝑇𝑝𝑀 ×𝑇𝑝𝑀 → ℝ.
𝑔 is called Riemannian metric on 𝑀 and (𝑀, 𝑔) is then called Riemannian manifold.
Observe that this metric is, in general, not unique and it is not naturally determined by the
structure of 𝑀 as a manifold.

We assume the existence of a Riemannian metric on 𝑀 , but the following can be proved:

Theorem 1.1. If 𝑀 is a connected, smooth manifold, it is possible to define a Riemannian
metric 𝑔 on 𝑀 .
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Proof. See [ADD CITATION HERE].

Given a coordinate system [𝜉𝑖] at 𝑝, using our usual notation 𝜕𝑖 ∶= 𝜕
𝜕𝜉𝑖 (more precisely, we

should write 𝜕𝑖|𝑝 but it should be obvious from the context), we can see that the components
𝑔𝑖𝑗, for 𝑖, 𝑗 = 1, … , 𝑛, of 𝑔 at 𝑝, are determined by

𝑔𝑖𝑗(𝑝) = ⟨𝜕𝑖, 𝜕𝑗⟩𝑝, (1.3)

so that :

• the tensor at 𝑝 is written as 𝑔(𝑝) = 𝑔𝑖𝑗(𝑝)𝑑𝑖|𝑝 ⊗ 𝑑𝑗|𝑝, where {𝑑𝑖|𝑝} = {𝑑𝜉𝑖|𝑝}, for 𝑖 =
1, … , 𝑛 is the dual basis of {𝜕𝑖} in the cotangent space 𝑇 ∗

𝑝 𝑀 ;
• the scalar product between two tangent vecctor at 𝑝 is ⟨𝑣, 𝑤⟩𝑝 = 𝑔𝑖𝑗(𝑝)𝑣𝑖𝑤𝑗, for any two

vectors 𝑣 = 𝑣𝑖𝜕𝑖|𝑝, 𝑤 = 𝑤𝑖𝜕𝑖|𝑝 ∈ 𝑇𝑝𝑀 ;
• and the norm of any 𝑣𝑖𝜕𝑖|𝑝 = 𝑣 ∈ 𝑇𝑝𝑀 is given by ‖𝑣‖2

𝑝 = 𝑔𝑖𝑗(𝑝)𝑣𝑖𝑣𝑗.

Furthermore, we can define the length of a (piecewise) smooth curve 𝛾 ∶ 𝐼 ∋ 𝑡 ↦ 𝛾(𝑡) ∈ 𝑀 ,
where 𝐼 ⊂ ℝ is a bounded interval, as

𝐿𝑔(𝛾) = ∫
𝐼

√|𝑔 (𝛾′(𝑡), 𝛾′(𝑡))|𝑑𝑡.

Remark. 𝐿𝑔(𝛾) is re-parametrisation invariant.

Given the length of a curve, we can define a distance function in (𝑀, 𝑔) so that (𝑀, 𝑑𝑔) is a
metric space, in the following way:

𝑑𝑔(𝑝, 𝑞) ∶= inf {𝐿g(𝛾) ∣ 𝛾 ∶ [𝑎, 𝑏] → 𝑀, 𝛾 piecewise smooth, 𝛾(𝑎) = 𝑝, 𝛾(𝑏) = 𝑞} . (1.4)

A curve 𝛾 achieving the minimum in (Equation 1.4) is called geodesic.

Now, we can ask: how does a change of basis modify the metric tensor? Suppose we are
given another coordinate system [𝜌𝑖] at 𝑝 and let us define ̃𝜕𝑘 = 𝜕

𝜕𝜌𝑘 , then, simply recalling
(Equation 1.1), we have:

⟨ ̃𝜕𝑘, ̃𝜕ℓ⟩ = ̃𝑔𝑘ℓ = 𝑔𝑖𝑗 ( 𝜕𝜉𝑖

𝜕𝜌𝑘 ) ( 𝜕𝜉𝑗

𝜕𝜌ℓ )

and
𝑔𝑖𝑗 = ̃𝑔𝑘ℓ (𝜕𝜌𝑘

𝜕𝜉𝑖 ) (𝜕𝜌ℓ

𝜕𝜉𝑗 ) ,

(observe that there is a dependence on 𝑝 everywhere in the previous formulas, but we will often
“forget” to write it explicitly).
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The coefficients 𝑔𝑖𝑗(𝑝) form a square matrix 𝐺(𝑝), which is symmetric and positive definite, so,
its inverse 𝐺(𝑝)−1 exists. Let 𝑔𝑖𝑗(𝑝) be its 𝑖𝑗−th element, then

𝑔𝑖𝑗𝑔𝑗𝑘 = 𝛿𝑘
𝑖 = { 1 (𝑘 = 𝑖)

0 (𝑘 ≠ 𝑖)

from which we can also obtain the change-of-coordinates relations (as exercise).

On a Riemannian manifold we can also define the gradient of a differentiable 𝑓 , denoted here
by grad 𝑓 , as the vector field satisfying

𝑔(𝑣, grad 𝑓) = 𝑑𝑓(𝑣) (1.5)

for all 𝑣 ∈ 𝑇 𝑀 .

1.1.4 Affine connections and covariant derivatives

In this section our goal is to compare tangent spaces 𝑇𝑝(𝑀) and 𝑇𝑞(𝑀), and the respective
vectors, when 𝑝 ≠ 𝑞 ∈ 𝑀 or, in general, to compare vector field 𝑋, 𝑌 ∈ 𝔛(𝑀) by giving a
meaning to the derivative ∇𝑋𝑌 of a vector field 𝑋 w.r.t. the vector field 𝑌 .

Let us start with our an affine manifold 𝔸𝑛. [PUT EXAMPLE HERE]

Definition 1.5.
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Affine connection and covariant derivative

Let 𝑀 be a differentiable manifold. An affine connection or covariant derivative operator ∇,
is a map

∇ ∶ 𝔛(𝑀) × 𝔛(𝑀) ∋ (𝑋, 𝑌 ) ↦ ∇𝑋𝑌 ∈ 𝔛(𝑀)
which satisfies the following properties for every 𝑝 ∈ 𝑀

i. (∇𝑓𝑌 +𝑔𝑍𝑋)𝑝 = 𝑓(𝑝) (∇𝑌 𝑋)𝑝 + 𝑔(𝑝) (∇𝑍𝑋)𝑝 for all 𝑓, 𝑔 ∈ 𝐷(𝑀) and vector fields
𝑋, 𝑌 , 𝑍 ∈ 𝔛(𝑀);

ii. (∇𝑌 𝑓𝑋)𝑝 = 𝑌𝑝(𝑓)𝑋𝑝 + 𝑓(𝑝) (∇𝑌 𝑋)𝑝 for all 𝑋, 𝑌 ∈ 𝔛(𝑀) and 𝑓 ∈ 𝐷(𝑀);
iii. (∇𝑌 𝑓𝑋)𝑝 = 𝑌𝑝(𝑓)𝑋𝑝 + 𝑓(𝑝) (∇𝑌 𝑋)𝑝 for all scalars 𝑎, 𝑏 ∈ ℝ and 𝑋, 𝑌 , 𝑍 ∈ 𝔛(𝑀).

The contravariant vector field ∇𝑌 𝑋 is called the covariant derivative vector of 𝑋 with respect
to 𝑌 and the affine connection ∇.

Firstly, observe that 𝑌𝑝(𝑓) indicates the directional derivative of a differentiable (real-valued)
function 𝑓 in the direction of the vector field 𝑌 , in 𝑝 ∈ 𝑀 . 𝑌𝑝(𝑓) = 𝑑𝑓𝑝(𝑌 ) = 𝑑𝑓(𝑌𝑝), where
𝑑𝑓𝑝 ∶ 𝑇𝑝𝑀 → ℝ is the differential of 𝑓 at 𝑝, see Definition 1.4.

Remark. The properties listed in the definition are pointwise. If two vector fields 𝑋 and 𝑋′

have the same value at 𝑝, i.e. 𝑋𝑝 = 𝑋′
𝑝 then (∇𝑋𝑍)𝑝 = (∇𝑋′𝑍)𝑝. Similarly if 𝑌 = 𝑌 ′ in a

neighbourhood of 𝑝, then (∇𝑋𝑌 )𝑝 = (∇𝑋𝑌 ′)𝑝.

Connection coefficients

Let us consider, as usual, a local chart (𝑈, 𝜙) at 𝑝 ∈ 𝑈 ⊂ 𝑀 with coordinate [𝜉𝑖] for 𝑖 = 1, … , 𝑛
and two vector fields 𝑋, 𝑌 ∈ 𝔛(𝑀), which we decompose w.r.t. 𝜕𝑖|𝑝. Then

(∇𝑋𝑌 )𝑝 = 𝑋𝑖(𝑝)𝑌 𝑗(𝑝)∇𝜕𝑖|𝑝𝜕𝑗 + 𝑋𝑖(𝑝)𝜕𝑖𝑌 𝑗|𝑝𝜕𝑗|𝑝
using ∇𝜕𝑖|𝑝𝜕𝑗 = ⟨∇𝜕𝑖

𝜕𝑗, 𝑑𝑘⟩ 𝜕𝑘|𝑝 ∶= Γ𝑘
𝑖𝑗(𝑝)𝜕𝑘|𝑝

= 𝑋𝑖
𝑝 (𝜕𝑖𝑌 𝑗|𝑝 + Γ𝑘

𝑖𝑗(𝑝)𝑌 𝑗
𝑝 ) 𝜕𝑘,

(1.6)

where 𝜕𝑖𝑌 𝑗|𝑝 = 𝜕𝑌 𝑗
𝜕𝜉𝑖 ∣

𝑝
.
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For fixed 𝑋 ∈ 𝔛(𝑀) and 𝑝 ∈ 𝑀 , the linear map 𝑌𝑝 ↦ (∇𝑌𝑝
𝑋)𝑝 (and a known result which

guarantees that, for 𝑝 ∈ 𝑀 , if 𝑡 ∈ 𝒜ℝ(𝑇𝑝𝑀) then there exists a differentiable tensor field Ξ in
𝑀 such that Ξ𝑝 = 𝑡 [ADD CITATION HERE]) defines a tensor (∇𝑋)𝑝 ∈ 𝑇 ∗

𝑝 𝑀 ⊗ 𝑇𝑝𝑀 such
that the only possible contraction of 𝑌𝑝 and (∇𝑋)𝑝 is (∇𝑌𝑝

𝑋)𝑝. Varying 𝑀 ∋ 𝑝 ↦ (∇𝑋)𝑝
defines a smooth (1, 1) tensor field ∇𝑋, which in local coordinates reads

𝜕𝑖𝑋𝑘 + Γ𝑘
𝑖𝑗𝑋𝑗

and is called covariant derivative tensor of 𝑋 w.r.t. the affine connection ∇.

It can be proved that assigning an affine connection on a manifold 𝑀 of dimension 𝑛 is
completely equivalent to giving the 𝑛3 coefficients Γ𝑘

𝑖𝑗(𝑝) in each local coordinate system, as
smooth functions w.r.t. 𝑝 and transform according to [ADD REFERENCE TO EQUATION
HERE].

Now that we have the concept of affine connection, let us introduce the parallel transport and
derivation of vectors fields along curves.

According to Remark 2. it makes sense to define the derivative in 𝑝, ∇𝑋𝑝
𝑌 , where 𝑋𝑝 is

a vector belonging to the tangent space of 𝑀 at 𝑝. [PUT EXAMPLE AND FORMULA
HERE]

• covariant derivative of tensor fields

We define
(∇𝜂)𝑘𝑖 = 𝜂𝑘,𝑖 ∶= 𝜕𝜂𝑘

𝜕𝜉𝑖 − Γ𝑟
𝑖𝑘𝜂𝑟

as the covariant derivative (tensor) of the covariant vector field 𝜂. ∇𝜂 is the unique tensor
field of type (0, 2) such that the contraction of 𝑋𝑝 and (∇𝜂)𝑝 is (∇𝑋𝑝

𝜂)𝑝.

The coefficient 𝑇 𝑖
𝑗𝑘 ∶= Γ𝑖

𝑗𝑘 − Γ𝑖
𝑘𝑗 define the components of a tensor field, called the torsion

tensor field of the connection

𝑇 = (Γ𝑖
𝑗𝑘 − Γ𝑖

𝑘𝑗) 𝜕𝑖 ⊗ 𝑑𝑗 ⊗ 𝑑𝑘.

The torsion tensor at 𝑝 is then, a bilinear map from 𝔛(𝑀) × 𝔛(𝑀) to a smooth vector field
(same as for ∇), defined as

𝑇𝑝(∇) (𝑋𝑝, 𝑌𝑝) = ∇𝑋𝑝
𝑌 − ∇𝑌𝑝

𝑋 − [𝑋, 𝑌 ]𝑝

If the tensor field 𝑇 vanishes on 𝑀 for every 𝑋, 𝑌 ∈ 𝔛(𝑀), i.e. [𝑋, 𝑌 ] = ∇𝑋𝑌 − ∇𝑌 𝑋, then
∇ is said to be torsion free.

Given 𝑋, 𝑌 ∈ 𝔛(𝑀), the term [𝑋, 𝑌 ]𝑝 is called bracket (or Lie bracket) and it is defined as the
unique contravariant smooth vector field 𝑍 such that 𝑍𝑓 = (𝑋𝑌 −𝑌 𝑋)𝑓 = 𝑋(𝑌 (𝑓))−𝑌 (𝑋(𝑓))
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for each 𝑓 ∈ 𝐷(𝑀). The bracket exists and is unique, see e.g. [Lemma 5.2; Carmo (1992)]. Or
[Gallot, Hulin, Lafontaine].

Given a Riemannian manifold (𝑀, 𝑔), there is a preferred (exactly one) affine connection ∇,
which is torsion free and is completely determined by the metric, i.e. ∇𝑔 = 0. This is the
Levi-Civita connection. Its coefficients, called Christoffel’s coefficients, are:

Γ𝑖
𝑗𝑘 = {𝑖

𝑗𝑘} ∶= 1
2𝑔𝑖𝑠 (𝜕𝑔𝑘𝑠

𝜕𝜉𝑗 + 𝜕𝑔𝑠𝑗
𝜕𝜉𝑘 − 𝜕𝑔𝑗𝑘

𝜕𝜉𝑠 ) .

{𝑖
𝑗𝑘} is called Christoffel’s symbol.

Assume 𝑀 is a smooth manifold with an affine connection ∇ and 𝛾 is a smooth curve from
an open interval (𝑎, 𝑏) to 𝑀 . Then we say that the mapping 𝑋 ∶ (𝑎, 𝑏) → 𝑇𝛾(𝑡)𝑀 defined by
𝑡 ↦ 𝑋(𝑡) is a smooth vector field along 𝛾, if its components are smooth functions in every
local chart at 𝛾(𝑡) for every 𝑡 ∈ (𝑎, 𝑏). Note that the case 𝑋(𝑡) = 𝑌 |𝛾(𝑡) for some vector field
𝑌 ∈ 𝔛(𝑀) is a special case of vector field along 𝛾.

• add definitions of parallel transport in the different cases, with the connection applied
to…

Flat manifolds

• affine coordinate system

Jun Zhang - tutorial

1.2 Other useful reminders

• Probability and statistics (exponential and mixture families, moments and moment gen-
erating function, score and likelihood, entropy…)

• Tensor algebra
• Calculus of variations (Euler-Lagrange equation)
• Optimal transport
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2 Information geometry of statistical models

Let 𝒳 be a set, we will now consider probability distributions on 𝒳, i.e.

𝑝 ∶ 𝒳 → ℝ

such that 𝑝(𝑥) ≥ 0 for all 𝑥 ∈ 𝒳 and

i. ∑𝑥∈𝒳 𝑝(𝑥) = 1 if 𝒳 is a discrete set, or
ii. ∫𝒳 𝑝(𝑥)𝑑𝑥 = 1 (in this case 𝑝 is a density function).

In general (𝒳, ℬ, 𝜈) is a measurable space with 𝜎−algebra (or Borel field) ℬ, 𝜈 a 𝜎−finite
measure. Given a probability measure 𝑃 on 𝒳 which is absolutely continuous w.r.t. 𝜈, 𝑝 =
𝑑𝑃
𝑑𝜈 ∶ 𝒳 → ℝ is the Radon-Nikodym derivative of 𝑃 . Here, we are interested in families of
probability distributions on 𝒳.

Consider a family 𝑆 of probability distributions parametrised over a set of parameters Ξ ⊂ ℝ𝑛

𝑆 = {𝑝𝜉 = 𝑝(𝑥; 𝜉) ∶ 𝜉 = [𝜉1, … , 𝜉𝑛] ∈ Ξ}

where the mapping (parametrisation) 𝜉 ↦ 𝑝𝜉 is injective. 𝑆 is called an 𝑛−dimensional
(parametric) statistical model on 𝒳.

• given observations 𝑥1, … , 𝑥𝑛 estimate the distribution generating the data 𝑝∗ (true un-
derlying distribution).

• 𝑝∗ is unknown, but we often assume that it comes from a family of distributions, a model,
and the problem becomes a parameter estimation.

Now, we want to add a differentiable structure to a statistical model 𝑆 and use geometri-
cal methods and arguments to approach usual statistical problems. Firstly, we need some
assumptions allowing us to:

• Differentiate w.r.t. the model parameters → Ξ ⊂ ℝ is open and ∀𝑥 ∈ 𝒳 the function
𝜉 ↦ 𝑝(𝑥; 𝜉) is smooth; we also assume that the order of integration and differentiation
may be swapped.

• The support of the probability distributions does not vary with 𝜉, i.e. supp(𝑝𝜉) =
supp(𝑝) = {𝑥 ∈ 𝒳 ∶ 𝑝(𝑥) > 0}.
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We can then choose 𝒳 = supp(𝑝) so that a statistical model 𝑆 is a subset of

𝒫(𝒳) ∶= {𝑝 ∶ 𝒳 → ℝ ∶ 𝑝(𝑥) > 0 ∀𝑥 ∈ 𝒳, ∫
𝒳

𝑝(𝑥)d𝑥 = 1} .

There are here some technicalities we are skipping, but we refer the reader to (Ay et al. 2017).

Given a statistical model 𝑆 = {𝑝𝜉 ∶ 𝜉 ∈ Ξ}, we can take a global chart

𝜑 ∶ 𝑆 → ℝ𝑛

𝑝𝜉 ↦ 𝜉

so that 𝜉𝑖 define our (global) coordinate system for 𝑆. Observe that each re-parametrisation
of the model 𝜓 ∶ Ξ → 𝜓(Ξ) ⊂ ℝ𝑛, where 𝜓 is a smooth diffeomorphism, provides another
equivalent (global) coordinate system for 𝑆, i.e. 𝜌 = 𝜓(𝜉) and 𝑆 = {𝑝𝜓−1(𝜌) ∶ 𝜌 ∈ 𝜓(Ξ)}. We
can then consider 𝑆 as a differentiable manifold, called a statistical manifold.

2.0.1 The Fisher metric

Let 𝑆 be an 𝑛−dimensional statistical manifold, given a point 𝑝𝜉 ∈ 𝑆, or, as we will henceforth
write, given a point 𝜉 (∈ Ξ), the Fisher information matrix of 𝑆 at 𝜉 is a 𝑛 × 𝑛 matrix
𝐺(𝜉) = (𝑔𝑖𝑗(𝜉)) defined by

𝑔𝑖𝑗(𝜉) ∶= 𝔼𝜉 [𝜕𝑖ℓ𝜉𝜕𝑗ℓ𝜉] = ∫ 𝜕𝑖ℓ(𝑥; 𝜉)𝜕𝑗ℓ(𝑥; 𝜉)𝑝(𝑥; 𝜉)d𝑥 (2.1)

where 𝜕𝑖 = 𝜕
𝜕𝜉𝑖 , 𝔼𝜉 denotes the expectation w.r.t. 𝑝𝜉, and ℓ𝜉(𝑥) = ℓ(𝑥; 𝜉) = log 𝑝(𝑥; 𝜉).

Assuming that the integral is finite

FIM as the covariance matrix of the score, which is symmetric and positive semi-definite (could
be undefined too). When it is positive definite, it is said regular, and yields the Fisher metric
on manifolds. Observe that here, due to the regularity assumption that we can exchange
differentiation and integration, the expectation of the score is 0 and so we write the FIM using
only the expectation. Bartlett identities??

• Probability simplex, affine space, statistical bundle.
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3 Non-parametric information geometry

Geometrising a problem or a field should, in principle, provide tools which do not depend
from parametrisations. Hence, it makes sense that non-parametric models should be the main
object of interest in IG. Of course, dealing with infinite-dimensional spaces is not always easy
(or at our reach), but we can still introduce the methods and results of a non-parametric IG in
the finite-dimensional case. In this way, the finite-dimensional (parametric) theory is derived
from the infinite-dimensional (non-parametric) one.

The main references here are(Pistone 2013, 2019).

• Open probability simplex
• Affine structure
• Tangent space to 𝑝: variables with zero expected value w.r.t. 𝑝.

The set of probability functions over a finite sample space 𝑋 is the probability simplex. This
can be seen as the set generated by 𝛿−functions, centred at each point 𝑥 ∈ 𝑋. 𝒫(𝑋) is a
convex subset of ℝ𝑋, or, also, a convex subset of the affine space 𝑝 ∈ ℝ𝑋 ∶ ∑𝑥∈𝑋 𝑝(𝑥) = 1.
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4 Summary

In summary, this book has no content whatsoever.
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